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Abstract: This paper presents an efficient computer-aided diagnosis (CAD) approach for the auto-
matic detection of Alzheimer’s disease in patients’ T1 MRI scans using the voxel-based morphometry
(VBM) analysis of the region of interest (ROI) in the brain. The idea is to generate a normal dis-
tribution of feature vectors from ROIs then later use for classification via Bayesian regularized
neural network (BR-NN). The first dataset consists of the magnetic resonance imaging (MRI) of
74 Alzheimer’s disease (AD), 42 mild cognitive impairment (MCI), and 74 control normal (CN)
from the ADNI1 dataset. The other dataset consists of the MRI of 42 Alzheimer’s disease dementia
(ADD), 42 normal controls (NCs), and 39 MCI due to AD (mAD) from our GARD2 database. We
aim to create a generalized network to distinguish normal individuals (CN/NC) from dementia
patients AD/ADD and MCI/mAD. Our performance relies on our feature extraction process and data
smoothing process. Here the key process is to generate a Statistical Parametric Mapping (SPM) t-map
image from VBM analysis and obtain the region of interest (ROI) that shows the optimistic result
after two-sample t-tests for a smaller value of p < 0.001(AD vs. CN). The result was overwhelming
for the distinction between AD/ADD and CN/NC, thus validating our idea for discriminative MRI
features. Further, we compared our performance with other recent state-of-the-art methods, and it is
comparatively better in many cases. We have experimented with two datasets to validate the process.
To validate the network generalization, BR-NN is trained from 70% of the ADNI dataset and tested
on 30% of the ADNI, 100% of the GARD dataset, and vice versa. Additionally, we identified the brain
anatomical ROIs that may be relatively responsible for brain atrophy during the AD diagnosis.

Keywords: Alzheimer’s disease; VBM; AAL; t-test; feature extraction; BR-NN; computer-aided
diagnosis (CAD)

1. Introduction

Alzheimer’s disease is a neurodegenerative disorder causing dementia, which fre-
quently affects elderly people. The disease mainly affects the brain and its vital parts.
In this disease, the brain is affected in various regions causing a significant change in
the structural and functional region of the brain [1,2]. With the breakthrough of various
imaging techniques such as MRI, positron emission tomography (PET), and computed
tomography (CT) scans in the medical sector, numerous efforts have been conducted to
process, simulate, and interpret the results for computer-aided diagnosis (CAD) that will be
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crucial for medical professionals. Similarly, various research using structural and functional
MRI as the primary biomarker has been performed to efficiently develop a CAD system
for Alzheimer’s disease diagnosis and detection. MRI is a magnetic-field gradient-based
neuroimaging biomarker technique that provides anatomic and physiological information
for the diagnosis of different parts of the body including the brain. It uses a strong magnetic
field and radio-wave to generate a higher-quality picture of the structure and volume of the
brain, called structural MRI (sMRI). Although sMRI does not show the functional activity
of the brain, it can reflect the content of brain tissue that can be useful to detect the abnor-
malities in the brain of AD patients compared to the healthy ones. These discriminative
features lie in the content of white matter or ventricles, with a change in cortical thickness,
hippocampus shape, and brain volume, which can be the probable structural features to
detect AD. On group comparison, the voxel intensities of obtained clusters after the t-test
amplifies these differences, eventually generating ROIs for feature extraction.

In neuroimaging, VBM [3] is used to investigate the anatomic morphology of the
brain and its related part using the intensity value of every voxel present in the MRI scan.
It is generally used with different statistical parametric mapping approaches to analyze
tissue contents between two or more groups of patients under different hypothesis tests.
VBM extracts features of three tissue distributions: gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) in each voxel considered at a time. It follows the pipeline
as executed by John et al. [3] and was later followed by Savio et al. [4], Busatto et al. [5],
Frisoni et al. [6], and Beheshti et al. [7,8] for Alzheimer’s prone structural MRI classification.
Savio et al. [4] applied VBM in the Open Access Series of Imaging Studies (OASIS) dataset
to detect AD patients from the NC and myotonic dystrophy of type 1 (MD1) patients from
healthy controls (HCs) from the dataset of the Neurology Department of the Donostia
hospital. The extracted features were voxels values and mean and standard deviation
(MSD) from SPM t-map images. These features were classified using machine-learning
tools such as Support vector machine (SVM) and have achieved the highest accuracy
of 81%. Beheshti et al. [7] applied a similar technique to detect 130 AD and 130 HCs,
extracting the voxel value from voxels of interest (VOI) using a probability distribution
function (PDF) for feature reduction (selection), which is later classified using SVM and
RBF kernels. They used the ADNI dataset and reported up to 90% accuracy from ten-fold
cross-validation. Subsequently, Beheshti et al. [8] again published a paper with higher
accuracy of up to 92.48% using seven feature ranking methods for the same VOI-based
features. On the other hand, non-Morphometry based feature extraction technique using
classical methods such as Dual-Tree Complex Wavelet Transform (DTCWT) [9], wavelet
entropy [10], Singular Value Decomposition (SVD) [11], Scaled Chaotic Artificial Bee Colony
(SCABC) [12], Downsized Kernel Principal Component Analysis (DKPCA) [13] including
machine-learning and deep-learning techniques [14–16] like Recurrent Neural Network
and Semantic Segmentation [17,18] have been used in recent times in CAD development
for AD detection between NC and MCI. Also, major advances in structural and functional
neuroimaging studies have resulted in improvements in the early and accurate detection
of AD [19–24].

In this study, we investigated the VBM method using SPM 12 for MRI classification. We
had combined the traditional VBM pipeline [3] along with our proposed feature extraction
process to support the classification of the normalized feature vectors. Following the VBM
execution pipeline, we obtained a t-map image showing the areas where distinction exists
between two groups (CN and AD/MCI), used in the t-test. The obtained t-map is used
to identify ROIs to generate the features for classification. To support the classifier with
a normal distribution of features belonging to each group, we implemented Gaussian
smoothing to generate weighted average feature vectors without any feature reduction.
Subsequently, the smoothened features are fed into the neural network along with their
label and trained based on Bayesian optimization. Once the network is trained, it is tested
on other sets of data, and finally, the results are evaluated.
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2. Materials
2.1. Image Acquisition

The T1-MR images and data used in this work were obtained from the Alzheimer’s
disease neuroimaging initiative (ADNI) database [25]. The selected sMRI were acquired at
1.5 T using a Siemens scanner and preprocessed using the University of California, San
Diego (UCSD) ADNI pipeline in two steps for a three-dimensional (3D) Grad-warp [26,27]
and B1 non-uniformity correction [28]. It is important to consider the work of Clifford
et al. [29] who studied the approaches for standardization of ADNI MRI protocols and
acquisition parameters for each imaging sequence, post-acquisition correction of image
artifacts, and other technical non-uniformity for data variation minimization. The obtained
MRI scans were in Nifti (.nii format) 3D volume, which can be processed for VBM analysis
as illustrated in Figure 1.
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2.2. Participants

The first dataset for our study is from ADNI that consists of 74 AD, 74 CN, and 40
Mild MCI patients’ scans. The training and testing sets were selectively adapted from
Cuingnet et al. [2]. We have selected a limited number of AD and NC, as the available
MCI subjects are comparatively less, so to balance the classwise approximation of the
classifier, we have used limited subjects in both datasets for comparative study. We have
selected one MRI from each patient having a uniform dimension of 256 × 256 × 166 (to
avoid a co-registration problem). The second dataset is from GARD that consists of 42
ADD, 42 NC, and 39 mAD. T1 weighted MRI scans are preferred in both datasets for the
experiment as most of the VBM based work uses T1 scans and it has been reported that the
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contrast-enhanced T1-weighted MRI was significantly superior to T2-weighted for imaging
assessment without statistically significant difference [30]. The detailed demographic is
shown in Table 1.

Table 1. Demographic details. ADNI participant complete details are included in the Supplementary
File. CN and NC, in general, represent the same normal patients, it is the categorical labels used in
each database, i.e., ADNI and GARD respectively so, is the AD and ADD. ‘#’ meaning number.

Dataset Information
Cohort Domain

AD/ADD MCI/mAD CN/NC

ADNI
# of male/female

subject 35/39 21/19 36/40

Mean age 76.18 ± 7.46 74.46 ± 6.88 75.8 9 ± 5.26

GARD

# of male/female
subject 24/18 24/15 24/18

Mean age 76.25 ± 3.33
75.03 ± 6.29

74.75 ± 3.588
72.06 ± 2.89

76.26 ± 4.57
69.66 ± 3.09

3. Methodology

We will discuss the proposed method thoroughly following each step involved.
Figure 2 provides a quick illustration of the proposed method.
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3.1. VBM SPM Model 

Figure 2. Proposed CAD classification method.

3.1. VBM SPM Model

All MRI scans undergo the preprocessing process as in 3.1.1 required to make all MRI
scans ready for SPM modeling. We have used a GUI-based SPM toolbox for SPM model
generation. 3.1.1 to 3.1.2 is implemented manually using the SPM toolbox as shown in
Figure 3.
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3.1.1. MRI Preprocessing for Voxel-Based Model

The major process in VBM includes: (i) spatial normalization and diffeomorphic
anatomical registration through exponentiated lie algebra (DARTEL) registration, (ii) mod-
ulation and segmentation, and (iii) smoothing. Spatial normalization transforms all the
participants’ volume to the same stereotactic space for uniformity. The SPM 12 MATLAB
toolbox is used for spatial registration. It uses the DARTEL [31] registration template which
was created from 555 participants of the IXI dataset [3] between 20–80 years. We used
tissue probability maps (TPM) [32] for the initial spatial registration and segmentation
as a reference map. The final image was smoothened using the Gaussian smoothing ker-
nel size [8 8 8] to suppress noise and effects due to the residual difference in functional
and gyral-related anatomies during inter-participant averaging. Hence, the normalized-
modulated-segmented smooth image of voxel 1.5 mm and dimensions 121 × 145 × 121
was finally formed for each tissue volume, i.e., GM, WM, and CSF. We have considered the
GM and WM volume as the major input for the further mapping process.

3.1.2. SPM t-Map

Normalized DARTEL—wrapped, modulated smooth GM and WM images were
separately used to build a general linear model (GLM) to detect gray matter (or white
matter) volume changes performing a voxel-wise two-sample t-test (one group being CN
and the other being MCI or AD) in SPM12 using Equation (1):

Yi = Xiβ + εi (1)

Here, Yi is the predicted functional value for the ith participant and Xi (design matrix)
is the vector of regressor variables for the ith participant. For the matrix test, Xi is set [1 0]
for group 1 and [0 1] for group 2, during two-sample t-tests. β is a vector of parameters that
varies from voxel to voxel and must be estimated after the model is built. In the two-sample
t-tests, it represents the mean contrast of each group including covariates value as well. εi
is a normally distributed error term with a mean of zero and a variance of unit S.D and
varies across voxels. The total intracranial volume (TIV) was engaged in the design matrix
as a covariate with an absolute threshold at a value of 0.2. This model was implemented
using p < 0.001 and Gaussian random field (GRF) theory [33] for family-wise error (FWE)
correction to produce a final t-map image. Here, the p-value indicates the probability of
the null hypothesis being true; therefore, the lower the p-value, the better is the model.
Once SPM t-map image was generated, we could concentrate ROI selection on those areas
with GM volumes change detected by a voxel-based analysis using contrast as a feature as
in Figures 3 and 4, for further feature extractions. We have considered the selection and
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generation of the ROI as the most crucial and result-oriented process. If the selected ROI is
not chosen properly, an unfavorable result may be obtained.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22 
 

This model was implemented using p < 0.001 and Gaussian random field (GRF) theory 
[33] for family-wise error (FWE) correction to produce a final t-map image. Here, the p-
value indicates the probability of the null hypothesis being true; therefore, the lower the 
p-value, the better is the model. Once SPM t-map image was generated, we could 
concentrate ROI selection on those areas with GM volumes change detected by a voxel-
based analysis using contrast as a feature as in Figures 3 and 4, for further feature 
extractions. We have considered the selection and generation of the ROI as the most 
crucial and result-oriented process. If the selected ROI is not chosen properly, an 
unfavorable result may be obtained. 

 
Figure 4. ADNI SPM t-map glass view for [CN AD] = [1 −1]. 

3.2. ROI Selection 
It is done after SPM modeling i.e., Sections 3.1.2., 3.2.1 and 3.2.2 describe our 

proposed method for ROI selection. It is done manually as described in the respective 
sections. Corresponding results using screenshots are shown in Figures 3 and 4, 
respectively. Section 3.3 is performed via MarsBaR (also SPM toolbox extension) and 
manual selection. Each section explains in detail how the process is done and what 
parameters were selected for the final implementation. 

3.2.1. From Each Cluster Generated into Separate ROI 
These ROIs are identified based on the t-map generated from VBM analysis. The 

regions which are significantly different and bundled into the same region are considered 
as a cluster, as shown in Figures 4–6. The generated clusters vary in shape and size, based 
on the significance of the p-values and the error correction used; p-value was computed 
based on a repetitive experiment in the range 0.1 to 0.0001, the one with the highest voxel 
number is reported i.e., p< 0.001. Thus, we have selected for p < 0.001 where 14 clusters 
were selected out of 30 clusters from the t-map of GM volumes, and one cluster from the 
t-map of the WM volumes both from the AD and CN two-sample t-tests. Similarly, three 
clusters were generated from the t-map of the GM volumes of the CN and MCI two-
sample t-tests. The selected 18 clusters were used as ROI directly to obtain the mean 
weighted voxel value from each participating MRI; we will term this ROI as ROI_CL 
hereinafter. The number of voxels in each ROI_CL differs abruptly so, if we accumulate 
all the voxels from each ROI, the number of voxels is going to be substantially large; hence 
one of the logical solutions would be taking mean weighted voxel value as stated in 
Equation (2) to represent a single value for each selected ROI for each MRI, demonstrated 
as shown in Appendix A, Table A1. 

Figure 4. ADNI SPM t-map glass view for [CN AD] = [1 −1].

3.2. ROI Selection

It is done after SPM modeling i.e., Sections 3.1.2, 3.2.1 and 3.2.2 describe our proposed
method for ROI selection. It is done manually as described in the respective sections. Cor-
responding results using screenshots are shown in Figures 3 and 4, respectively. Section 3.3
is performed via MarsBaR (also SPM toolbox extension) and manual selection. Each section
explains in detail how the process is done and what parameters were selected for the final
implementation.

3.2.1. From Each Cluster Generated into Separate ROI

These ROIs are identified based on the t-map generated from VBM analysis. The
regions which are significantly different and bundled into the same region are considered
as a cluster, as shown in Figures 4–6. The generated clusters vary in shape and size, based
on the significance of the p-values and the error correction used; p-value was computed
based on a repetitive experiment in the range 0.1 to 0.0001, the one with the highest voxel
number is reported i.e., p< 0.001. Thus, we have selected for p < 0.001 where 14 clusters
were selected out of 30 clusters from the t-map of GM volumes, and one cluster from the
t-map of the WM volumes both from the AD and CN two-sample t-tests. Similarly, three
clusters were generated from the t-map of the GM volumes of the CN and MCI two-sample
t-tests. The selected 18 clusters were used as ROI directly to obtain the mean weighted
voxel value from each participating MRI; we will term this ROI as ROI_CL hereinafter. The
number of voxels in each ROI_CL differs abruptly so, if we accumulate all the voxels from
each ROI, the number of voxels is going to be substantially large; hence one of the logical
solutions would be taking mean weighted voxel value as stated in Equation (2) to represent
a single value for each selected ROI for each MRI, demonstrated as shown in Appendix A,
Table A1.
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Figure 6. ROI_CL selected from the cluster of AD < CN (p < 0.001).

3.2.2. From AAL Template Based on the Anatomic Region

Each participant’s brain differs in terms of the structure and size of the anatomic
regions. This can be more problematic when anatomical ROIs are defined from a single
participant and applied to the remaining data, as a significant anatomical inconsistency
exists between the participants. Hence, we selected anatomic regions with a higher number
of voxels in each cluster. After obtaining those regions, we generated a mask from the
automated anatomic labeling (AAL) [34] atlas for those anatomic regions and co-registered
with our t-map image. The AAL atlas is a digital human brain atlas with 116 labelled
volumes indicating macroscopic brain structures. Hence, these masks can be used subse-
quently for feature extraction. The most significant regions of the brain based on the t-map
image using AAL atlas labels are tabulated in Tables 2 and 3 for the ADNI and the GARD
test conditions, respectively. From the tables, 14 anatomic regions were selected, and the
standard ROIs were generated from the AAL atlas, as shown in Figure 7. We will term
this ROI as ROI_AAL hereinafter. We applied the same weight-based mean calculation to
obtain the mean features to represent each ROI value from all MRI, as in ROI_CL, a few
demonstrated as in shown in the Appendix A, Table A2.
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Table 2. Result of ROI analysis for ADNI test condition.

ADNI Test Condition AAL Region Number of Voxels Mean T SD of T Cluster Number

CN > AD (FWE p < 0.001)

Insula_L 508 3.5646 0.333 1

Amygdala_L 256 7.602 0.6846 1

Olfactory_L 107 4.3285 0.9015 1

Amygdala_R 329 6.5708 0.9011 2

ParaHippocampal_R 138 6.9469 0.5042 2

Hippocampus_R 60 7.6221 0.3329 2

Thalamus_R 1020 5.2492 0.6611 3

Thalamus_L 981 4.4001 0.4153 3

Hippocampus_L 13 6.2737 0.3692 4

Temporal_Inf_L 1148 4.6223 0.6231 5

Fusiform_L 490 3.9798 0.684 5

Temporal_Inf_R 440 4.3544 0.6455 6

Temporal_Mid_R 238 4.7228 0.6999 6

CN > MCI (FWE p < 0.001)

Hippocampus_L 53 5.5327 0.1259 1

Amygdala_L 20 5.4556 0.1059 1

Hippocampus_R 25 5.4315 0.0893 2

Amygdala_R 24 5.5113 0.1407 2

Table 3. Result of ROI analysis for GARD test condition.

GARD Test Condition AAL Region Number of Voxels Mean T SD of T Cluster Number

NC > AD (FWE p < 0.001)

Hippocampus_L 247 6.192 0.3964 1

ParaHippocampal_L 212 6.4757 0.6251 1

Amygdala_L 208 6.0849 0.2441 1

Fusiform_L 103 6.4647 0.5286 1

Temporal_Pole_Sup_L 90 6.2633 0.2723 1

ParaHippocampal_R 179 6.4194 0.4744 2

Hippocampus_R 145 6.7702 0.5669 2

Amygdala_R 29 5.8039 0.0179 4

NC > MCI (no FWE p < 0.001)

Hippocampus_L 82 3.5717 0.2273 1

Hippocampus_R 53 3.5466 0.2281 2

Thalamus_R 19 3.4174 0.1511 2

3.3. Feature Extraction from Both Types of ROIs

Once the mask is generated from both ROI_CL and ROI_AAL, they are processed
further for ROI analysis where each mask fuses with every image of each patient to generate
only the important voxels. This voxel is higher in dimensions and is difficult to use as a
feature. Consequently, the feature dimensionality is reduced with their intensity values
averaged to obtain a mean intensity value. For each participant’s MRI, voxels that are
within the ROI are averaged to obtain a single representative value. The larger the ROI
area, the higher is this value as we have used the weighted mean as in Equation (2), which
becomes biased in the highly activated non-binary ROI. Although the ROI selection is a
general and typical process, it can be a pivotal factor for obtaining good results. An efficient
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SPM extension tool, MARSeille Boîte À Région d’Intérêt (MarsBaR) [35] was used for this
feature extraction process:

x′ = ∑n
i=1 xi × wi

∑n
i=1 wi

(2)

Here, xi represents the voxel intensity value for n voxels lying inside the ROI and wi
is the weight of the voxel. Here, wi will have high values representing high confidence for
voxels within the ROI, and wi values are nearly zero representing low confidence in outlier
voxels.

For VBM-based ROI, the selection was done manually based on cluster size, ROI_CL,
for which we selected the cluster with the highest number of voxels, e.g., AD vs. CN voxels
result from the ADNI dataset t-test yielded 30 clusters, of which we selected 14 clusters
with significant voxel numbers, while rest small-sized clusters were neglected (please refer
to the Supplementary Data file ADNI_AD_CN_p0.001_FWE_BrainLabels). Similarly, the
remaining four clusters were selected from the AD vs. CN WM t-test and CN vs. MCI t-test
(please refer to the Supplementary Data file ADNI_CN_MCI_p0.001_FWE_BrainLabels).
For ROI_AAL the selected clusters were matched with the AAL template, to obtain signifi-
cant anatomic regions, then those standard ROIs were used to create the mask for further
voxel detection from each ROI, for feature detection. On initial matching 23 ROI from AD
vs. CN (16 GM and seven WM), nine ROIs from AD vs. MCI, and 11 ROIs from CN vs.
MCI were detected. We selected the one with the highest number of voxels from each
cluster and the overlapped regions. In total there were 18 ROIs from the cluster and 14
ROIs from the AAL atlas, as shown in Figures 6 and 7, which were tested separately to
obtain the best classification result.

4. Gaussian Smoothing

The extracted features from each participant are the weighted mean intensity value of
each ROI, which must be more homogeneous to their class and heterogeneous to others.
However, upon careful observation as in Figure 8, the original data (blue) contains some
highly unusual spikes at some point and can be considered abnormal. These spikes (x = 70,
110, 120, 144) were considered abnormal for the graph due to its extreme shifting from
mean positioning (however this doesn’t mean they are a less useful feature, each feature
values depends on its cluster size, only in regard to the distribution we consider it as
abnormal, which were averaged using Gaussian smoothing (GS) for accurate classification
using BR-NN). In general, the Gaussian distribution for one-dimensional vector operates
under the following equation:

G(xi,w) =
1

√2πσi,w
e
−xi

2

2σi,w
2 (3)

where xi represents the input value for the ith feature of each image for each ROI, and
σi,w represents the standard deviation for each group of ROI, w is the size of the window
over which the Gaussian weighted moving average is calculated. This window slides
over the specified length, and provides the average Gaussian value over that window,
as shown in Figure 8. With a Gaussian weighted moving window, data is transformed
to its normal distribution after the completion of its window operation. Please note the
window is an averaging moving function hence σi,w also keeps on changing however
we can approximate the final distribution to be a normal distribution for higher window
size. In our case, we have chosen w = 9 from our experiment. In Figure 8, the right part
separated from x = 1 to 74 represents the mean value for the AD patients and x = 75 to
x = 148 represents the mean value of CN patients from one cluster of ROI_CL. Here, GS
transforms the data from unknown haphazard distribution to the normal distribution, so
that it can be classified with less computational burden using the Bayesian regularized
neural network. It shifted the characteristics of each vector toward the mean value of its
target class and bring homogeneity in its cohort. This can be considered as a data cleaning
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step similar to the normalization process. Furthermore, it can work as a replacement for
the feature selection step where the features are transformed for better classification results.
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5. Bayesian Regularized Feed-Forward Neural Network (BR–FNN)

We used the Bayesian regularization [36] proposed by MacKay in 1992 for training
the NN. This regularization technique minimizes the linear combination of squared errors
and weights so that, at the end of the training the resulting network has good general-
ization qualities. Later in 1997 Foresee and Hagan [37] proposed optimization using the
Levenberg–Marquardt (LM) algorithm in the BR-FNN to reduce computational overhead.
It reduces the linear arrangement of squared errors and weights and finally produces a
good, generalized network after iterative training. The Bayesian regularization takes place
within the Levenberg-Marquardt algorithm. This can be summarized using the following
equations.

For training the sets of the form {x1 , t1 }, {x2 , t2 } . . . {xn , tn }, where {xi , ti } represents
the input value and the corresponding target for the ith term. The sum of squared error
during training is represented by:

ED =
n

∑
i
(ti − yi)

2 (4)

Here, ti are the target values and yi is the predicted response by the neural network
during the process of training for n number of training inputs.

The objective function for Bayesian optimization and regulation exhibits a standard
form as:

F(w) = βED + αEW (5)

Here, EW is the sum of squares of the network weights and the ED error calculated
from (4). Optimization parameters α and β are calculated as in Equations (6) and (7),
respectively.

α =
γ

2EW(W)
(6)

β =
n− γ

2ED(W)
(7)
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Initially, α = 0 and β = 1 such that F(w) = ED, where γ is the effective number of
parameters, calculated using the Gauss-Newton approximation to the Hessian matrix
available in the LM training algorithm until final convergence is met [37,38]. We first
randomly initialized a 2-layer feed-forward NN with the inputs connected to the first
hidden layers and the second layer is the output layers with only two output values for
binary classification. Here, the Nguyen-Widrow [39] method is used to initialize the weights
and bias values for each hidden layer so that the active regions of the layer’s neurons are
distributed almost evenly over the input space. Hyperbolic tangent sigmoid [40] is used as
an activation function in hidden layers to generate squashed outputs between [−1 1] for
input vectors whereas in the output layer it is a linear purelin function. Random partition
of training and testing (7:3) was performed manually on the whole set of features so that
only the partitioned training set participates in training BR-NN, while the test set remains
untouched. Later once the BR-NN model is trained, the test set is fed into the NN to find
out the testing accuracy.

To obtain the optimal number of hidden layers, the network was trained for a differ-
ent number of hidden layers starting from 1 to 20, initialized each time randomly. The
classification performance parameter was tested iteratively ten times for each number of
hidden layers such that the average performance is calculated each time; the resulting
graph is shown in Figure 9. Here, training will yield us, 10 independent models, for each
hidden layer i.e., when tested for up to 20 hidden layers in total 10 × 20 = 200 models
were developed. Out of which every 10 models with the same number of hidden layers
were passed iteratively for untouched test features, the average of ten iterations is then
reported. Later the best performance was observed for 17 hidden layers. Table A3 in the
appendix shows the result of each iteration. Subsequently, this network was used to verify
the dataset from the GARD dataset with its mean ROI feature as the input.

The same process was applied to train the BR-NN from the GARD dataset features
and was tested under the same condition for the ADNI dataset features. Both ROI_CL and
ROI_AAL were used separately as features.
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6. Performance and Discussion
6.1. ROI Selection and Its Importance

Table 4 presents the clinical ROIs found on t-test group comparison between participating
class domains; it lists the important brain regions identified using AAL matching. There were
majorly six clusters to distinguish the voxel intensities, with Left Temporal Inferior Lobe,
both Right and left Thalamus, left and right Amygdala, left Fusiform, left Insula, and right
Hippocampus being the prominent ones for CN versus AD, at p < 0.001, whereas left and
right Hippocampus, Temporal mid lobe, right Parahippocampal region were highlighted as
dense cluster for CN versus MCI. Details of all the clusters and numbers of voxel detected
are presented in Supplementary files. The ROIs identified using ADNI datasets are clearer
and larger whereas GARD datasets are smaller and dimmer, (please see Figures 4 and 5)
which may be due to the difference of MRI acquisition protocol [41], still the regions like
the hippocampus, Amygdala, Temporal lobe, Thalamus are commonly deteriorated during
AD/ADD and MCI/mAD (please see Tables 2 and 3, the T-value measures the size of the
difference relative to the variation in the group data. A higher T-value supports our null
hypothesis of group difference condition. SD of T represents the standard deviation measure
of T-value and mean-T, the mean value of all T-values for voxels in its cluster). As it is believed
that the loss of memory is mostly related to the limbic system including its subcortical struc-
tures like Hippocampus, Amygdala, more prominent in the left hemisphere [42]. However
various cortical structures including frontal, Parietal, Temporal lobes are also affected during
neurodegeneration [43,44]. Hence, it is wise to state that overall brain structures associated
with memory are affected during the AD memory dysfunction phase.

Table 4. Voxel values for each AAL anatomic region from each cohort t-test of ADNI dataset for ROI_AAL selection. Bold
represents the area from ROI_CL selected for ROI_AAL.

Region from
ROI_CL # of Voxels Mean T # of Cluster Selected Region for ROI

_AAL (Alphabetically)

GM based Region
(AD vs. CN)

Insula_L 508 3.5646 1 Amygdala_L

Amygdala_L 256 7.602 1 Amygdala_R

Amygdala_R 329 6.5708 2 Fusiform_L

ParaHippocampal_R 138 6.9469 2 Hippocampus_L

Hippocampus_R 60 7.6221 2 Hippocampus_R

Olfactory_R 46 3.8332 2 Insula_L

Temporal_Pole_Sup_R 30 5.5589 2 ParaHippocampal_L

Thalamus_R 1020 5.2492 3 ParaHippocampal_R

Thalamus_L 981 4.4001 3 Temporal_Inf_L

Hippocampus_L 13 6.2737 4 Temporal_Inf_R

Temporal_Inf_L 1148 4.6223 6 Temporal_Mid_R

Fusiform_L 490 3.9798 6 Temporal_Pole_Sup_L

Temporal_Mid_L 405 4.2446 6 Thalamus_L

Temporal_Inf_R 440 4.3544 7 Thalamus_R

Temporal_Mid_R 238 4.7228 7
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Table 4. Cont.

Region from
ROI_CL # of Voxels Mean T # of Cluster Selected Region for ROI

_AAL (Alphabetically)

WM based Region
(AD vs. CN)

Thalamus_R 124 4.0965 1

Hippocampus_R 79 4.7669 1

Thalamus_L 75 3.8945 1

Pallidum_R 27 4.1347 1

Caudate_R 26 3.6705 4

Putamen_R 24 3.7313 4

GM based Region
(AD vs. MCI)

Cingulum_Mid_R 64 2.7408 1

Insula_L 75 2.7419 2

Olfactory_R 61 2.6409 4

Temporal_Sup_R 42 2.5427 5

Lingual_R 79 2.5406 5

Insula_L 114 2.4783 6

Hippocampus_L 66 2.5187 10

GM based Region
(CN vs. MCI)

Temporal_Sup_R 1475 4.6274 1

Temporal_Mid_R 1310 4.5555 1

Hippocampus_R 873 5.9036 1

ParaHippocampal_R 730 4.6921 1

Temporal_Mid_L 1337 4.6585 1

Precuneus_L 888 4.8104 2

Fusiform_L 852 4.498 2

Hippocampus_L 667 5.6445 2

Temporal_Inf_L 505 4.6409 2

6.2. Experimental Result

The classification performance of our proposed method was tested based on three
parameters: accuracy, specificity, and sensitivity. Figure 10 displays the comparative
classification performance results using the ADNI dataset trained model on the left part
and the same parameter with the GARD trained dataset on the right part. Accuracy for
ADNI trained dataset drops from 97% to 80% in the GARD test set in the case of ROI_CL
based features, whereas the accuracy drop is not so severe in ROI_AAL based features.
Similarly, accuracy from the GARD-trained dataset drops from 96% to 91% in the ADNI
test set using ROI_CL features and from 97% to 88% in ROI_AAL features. Here all the
results are from ADNI-trained BR-NN models; the first four results are for 30% test sets of
ADNI, whereas the last four are for 100% of the GARD dataset used as the test set. To test
the validation of the proposed method, some ablation experiments were also performed
to conclude the need for smoothing and the importance of all features. Besides, this
experiment compares the efficiency via time consumption of each experiment. The results
of all performed experiments are shown in Table 5.
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Table 5. Ablation experiments results. Please note the difference in the performance result with and without GS.

ADNI 70% Dataset Trained
Experiment

Training
Result:

Proposed
(ROI_CL+GS

+BR-NN)

ROI_CL+BR-
NN

Testing
Result:

ROI_CL+BR-
NN)

50% Top
Features

ROI_CL+GS
+BR-NN

Training
Result

Proposed
ROI_AAL+GS

+BR-NN

ROI_AAL
+BR-NN

Testing
Result:

ROI_AA
+BR-NN)

50% Top
Features

ROI_AAL+GS
+BR-NN

ADNI Test
(AD vs. CN)

ACC 97.78 ± 1.7 70.22 + 7.20 88.67 + 0.7 99.56 + 0.49 98.22 ± 0.99 62.89 + 4.45 78.22 + 2.78 98.51 + 1.48

SEN 100 ± 0.00 66.4 + 7.11 90.87 + 1.37 100 + 0.00 100 ± 0.00 56 + 10.83 75 + 3.21 98.96 + 1.14

SPE 95.83 ± 2.22 75 + 13.33 86.36 + 0.5 95.65 + 1.69 96 ± 2.24 71.5 + 8.18 77.39 + 4.49 100

ADNI Test
(NC vs.
MCI)

ACC 96 ± 1.56 77.14 + 10.26 72.86 + 4.31 98.57 + 2.02 90.86 ± 2.63 73.43 + 10.69 80.57 + 4.63 98 + 1.38

SEN 100 ± 0.00 78.8 + 12.23 75.45 + 3.83 99.6 + 1.26 89.13 ± 2.29 82.4 + 8.68 82.31 + 6.83 98 + 0.52

SPE 89.2 ± 4.21 73 + 8.23 68.46 + 6.74 96 + 3.16 94.17 ± 7.91 51 + 11.14 75.56 + 4.68 93 + 4.83

Total Training Time (s)
AD vs. CN 319.0688 366.7428 319.0688 256.5436 287.4786 341.7982 287.4786 251.0212

GARD Test
(ADD vs.

NC)

ACC 80.95 ± 4.45 49.75 + 7.01 71.67 + 1.09 66.19 + 2.46 90.48 ± 2.45 54.64 + 4.64 75.6 + 0.84 90 + 2.82

SEN 61.9 ± 8.91 33.85 + 9.35 57.38 + 2.62 64.76 + 1.00 80.93 ± 4.89 46.43 + 6.85 72.86 + 1.66 80.24 + 6.05

SPE 100 ± 0.00 64.52 + 13.11 85.95 + 2.85 67.62 + 5.41 100 ± 0 62.86 + 8.49 78.33 + 1.76 99.76 + 0.75

GARD Test
(NC vs.
mAD)

ACC 41.23 ± 9.5 40.74 + 4.16 59.75 + 1.19 31.98 + 7.53 46.91 ± 2.14 41.11 + 3.99 42.35 + 3.03 39.38 + 6.20

SEN 85.13 ± 8.6 66.15 + 15.66 31.54 + 2.11 7.18 + 7.13 97.44 ± 4.44 55.9 + 9.80 73.59 + 10.04 81.79 + 12.87

SPE 8.3 ± 6.3 17.14 + 12.13 85.95 + 2.85 55 + 16.51 0.00 ± 0.0 27.38 + 8.49 13.33 + 5.04 0 + 0.00

Total Training Time (s)
NC vs. MCI 304.7792 912.7463 304.7792 199.8685 245.374 324.8097 245.374 379.8156

6.3. Discussion

Our result suggests the proposed method shows good classification results for AD
vs. CN (ADD vs. NC), and the network can be trained from either database, as the result
is good in both cases. However, in the case of CN vs. MCI (NC vs. mAD), the result is
satisfactory on the trainee dataset, but poor on the non-trainee dataset. This shows that
the distinction between CN vs. MCI is unfavorable with the proposed method; further, on
the fine analysis of feature, we found that the characteristics of the CN and MCI feature
after Gaussian smoothing become indistinguishable in contrary to CN vs. AD, which
may be the reason why the classifier cannot distinguish between them. In general AD
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and CN are comparatively more discriminative than CN and MCI (this is our primary
assumption), in the course of smoothing, the CN features tend more towards the CN mean
value and so does AD features, so because of this, the MCI group (which lies between AD
and CN) when smoothen loosens its MCI features and tends to follow either AD or CN
features, depending on its feature weights. This is also highlighted by the result of the
ROI_CL/ROI_AAL +BR-NN result column of Table 5, where the performance of all test
conditions i.e., AD vs. CN and CN vs. MCI abruptly drops if Gaussian smoothing is not
mediated before classification. Similarly, the test with half of the features results in poor
accuracy for the non-trainee dataset i.e., GARD classification.

Cuingnet et al. [2] have shown in their experiments that the voxel-based direct
method (similar to ROI_CL) and the atlas-based method (similar to ROI_AAL) for AD
vs. CN independent test in ADNI outperformed cortical thickness and hippocampus
volume-based classification. Also, methods using the whole brain reached specificity
over 90% than those based on the hippocampus. Besides in prodromal AD detection (CN
vs. MCIc), the sensitivity was substantially lower as in our case. In comparison to the
cortical thickness and hippocampus analysis, VBM-based methods are simple and direct,
SPM software can be used to generate tissue probability maps without extra parcella-
tion (with parcellation error during registration) as required by the Freesurfer software
(https://surfer.nmr.mgh.harvard.edu/ (accessed on 21 February 2021), which accounts
for heavy time consumption and hardware operation. Similarly, contrary to deep neu-
ral networks like CNN, which are beneficial for standalone classification purposes and
claiming the state-of-the-art performance in image classification. However, considering
very few CNN architectures being designed for 3D MRI scans [45] and the significances
of ROIs analysis as discussed in Sections 3.2 and 6.1 we were interested in VBM. In VBM,
we follow an established preprocessing pipeline to extract and visualize the group cluster
difference for generating ROIs of significant regions, hence is more specific in voxel-based
group statistics analysis, whereas CNN is a gradient-loss supervised algorithm for image-
attributes based feature extraction process primarily focused on classification rather than
ROI detection.

6.4. Comparison with State-of-the-Art Performance

Table 6 shows a brief comparison with other state-of-the-art performances. Zhang
et al. [46] used a multimodal imaging technique combining MRI, CSF, and PET data for
classification and reported up to 86.2% accuracy. Westman et al. [47] combined MRI and
CSF measurements to classify AD with NC using Freesurfer-extracted cortical thickness
and subcortical volumes. Aguilar et al. [48] used the same features for classification based
on the clinical dementia rating (CDR) score. Beheshti et al. [7] used the VBM extracted
VOI features of the voxel and PDF for feature selection, which was classified using the
SVM classifier. Subsequently, Beheshti et al. [8] reported a higher accuracy of 92.48%
using feature-ranking techniques to select the discriminative top feature instead of a
feature selection technique. The most used dataset is ADNI, whereas few researchers
have used OASIS [49] to report the accuracy. Most of the stated accuracy is from cross-
validation (CV). Conversely, we have reported average accuracy results from the test set.
We preferred a completely untouched test set so that the neural network model is trained
only using training features (Figure 2). Besides, it will also report a generalized cum
unbiased performance parameter. However, for verification we also tested 5-fold CV on the
whole feature set of ADNI and GARD datasets, to be accuracy equivalent to 98% and 97%
respectively, however, the most important accuracy is in other untouched datasets, which
cannot be calculated using k-fold. Besides, in contrast to single-step feature extraction from
voxels of t-map, we have implemented multistep AAL based masking (ROI_AAL) and
cluster-based selection of ROI (ROI_CL), then used the selected voxels as features (results
in Supplementary Data). This mask creation steps from AAL and cluster helps to identify
the atrophic anatomic regions of the brain, signifying the probable area of interest for
AD/ADD detection. All these methods are still progressively being updated and modified

https://surfer.nmr.mgh.harvard.edu/


Appl. Sci. 2021, 11, 6175 17 of 22

for better classification performance. Our reported accuracy of 98.22% for CN vs. AD is
the highest hitherto using VBM features on the ADNI database. Further, the accuracy of
90.48% in a completely different dataset, i.e., GARD indicated that it has generalized well.

Table 6. Comparison of the proposed method with other methods. * Number of hidden layers = 17, trained on 70% of ADNI
dataset, Test set: 30% ADNI, 100% GARD. Abbreviations: Orthogonal Partial Least Squares (OPLS), Multivariate analysis
(MVA), SVM Recursive Feature Elimination (SVM-RFE), Feedforward Neural Network (FNN), Multilayer Perceptron (MLP).

Author Biomarker Dataset Classifier AD/HC Validation
Method ACC (%) SEN (%) SPE (%)

Zhang et al. [46] MRI ADNI SVM 51/52 Ten-fold 86.2 86 86.3

Westman et al. [47] MRI ADNI OPLS
MVA 96/111 Ten-fold 87 83.3 90.193

Aguilar et al. [48] MRI ADNI SVM,
OPLS 116/110 Ten-fold 84.9 80.2 90.88

Zhou et al. [50] MRI ADNI SVM 59/127 Two-fold 78.2 68.5 81.7

Papakostaset al. [51] MRI OASIS KNN 49/49 Ten-fold 85 78 92

Khedher et al. [52] MRI ADNI SVM 188/229 Ten-fold 88.49 85.11 91.27

Iman Behesti et al. [7] MRI ADNI SVM 130/130 Ten-fold 89.65 87.73 91.57

Iman Behesti et al. [8] MRI ADNI SVM 130/130 Ten-fold 92.48 91.07 93.89

Yi Ding et al. [53] MRI ADNI SVM-RFE 54/58 Five-fold 92.86 87.04 98.28

Savio et al. [4] MRI OASIS NN 49/49 Ten-fold 86 80 92

Jha et al. [9] MRI OASIS FNN 28/98 Five-fold 90.06 ± 0.01 92.00 ± 0.04 87.78 ± 0.04

Wang et al. [10] MRI OASIS MLP 28/98 Five-fold 92.40 ± 0.83 92.14 ± 4.39 92.47 ± 1.23

Proposed Method

MRI ADNI
(ROI_CL) BR-NN 74/74 Average of ten

iterations * 97.78 ± 1.7 100.00 ± 0.00 95.83 ± 2.22

MRI GARD
(ROI_CL) BR-NN 42/42 Average of ten

iterations * 80.95 ± 4.45 61.9 ± 8.91 100.00 ± 0.00

MRI ADNI
(ROI_AAL) BR-NN 74/74 Average of ten

iterations * 98.22 ± 0.99 100 96 ± 2.24

MRI GARD
(ROI_AAL) BR-NN 42/42 Average of ten

iterations * 90.48 ± 2.45 71.43 ± 6.30 100

7. Conclusions

We present herein an efficient approach to extract mean weighted features from the
t-map obtained after VBM processing and then apply GS on the raw data. This will help to
distribute the features into a Gaussian distribution such that the classifier does not require
many operations to identify the distinguishing feature. Using an excessive number of
training materials could over-train the network and make it prone to over-fitting, so few
training materials were used for optimal training of the classifier model, which is also
one supportive idea for generalization. The use of the BR-NN helps to generalize the
network. Hence, we presented an optimized approach for the classification of an AD/ADD
from the CN/NC based on VBM ROI extracted-smoothed features. Our uniqueness lies
in the selection of ROIs and the extraction of ROI features. Unlike using all the voxel
of ROI generated from the t-test of VBM, we have used only the mean weighted value
from the entire ROIs voxels thus reducing feature and applying feature selection at once.
Besides, using AAL maps generated standard co-registered ROIs, priorities based on t-map
generated clusters of each anatomic region for mean weighted feature extraction are firstly
implemented by us as per our knowledge. To improve the result, we have suggested
Gaussian smoothing on a small window, which may also be the new attempt on post-
processing. Final classification based on Bayesian regularized NN finds this distribution
computationally easier to classify improving the overall performance accuracy of the
system. Additionally, we have experimented with two datasets in reference to each other
to validate the process. To summarize, our proposed method to optimize and generalize
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the AD/ADD detection using T1-MRI yields significant improvement over the previously
used VBM based method, at the same time, our findings of brain ROIs can help clinicians
to focus on those specific regions for further future discovery. Hence, we hope our attempt
will have some meaningful contribution in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11136175/s1. Includes four files showing the results of ROI analysis for the ADNI and
GARD datasets. A separate excel file is included for a detailed demographics study with subject ID,
CDR, MMSE score, age, imaging protocol, and other information of ADNI participants. Also, .m file
and extracted features (.xlsx) for code implementation.
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Appendix A

Table A1. ADNI-based ROI_CL feature sample data for first three MRIs from each cohort, read as AC_GM cluster at [−46.5
−36.0 −22.5] AC meaning AD vs. CN else CM meaning CN vs. MCI, GM stated the obtained ROI is from gray matter else
WM meaning White matter, coordinates indicate its center location.

MR1 0.3093 0.2374 0.3281 0.2701 0.3236 0.2851 0.3153 0.4931 0.3490 0.3527 0.3216 0.3242 0.3461 0.3991 0.1228 0.2657 0.3673 0.3670 AD

MR2 0.3925 0.5445 0.4526 0.5315 0.3892 0.4626 0.3869 0.4416 0.5676 0.4565 0.5105 0.4238 0.3969 0.3980 0.1114 0.5032 0.3712 0.4937 AD

MR3 0.3253 0.3617 0.3490 0.3129 0.4553 0.4456 0.4495 0.3161 0.4353 0.3725 0.3614 0.3375 0.3813 0.3794 0.1176 0.3147 0.3229 0.3914 AD

MR75 0.5074 0.5122 0.5295 0.5587 0.4627 0.5046 0.4328 0.5831 0.6103 0.5532 0.5588 0.4860 0.4192 0.4568 0.1192 0.5566 0.4118 0.6085 CN

MR76 0.4533 0.4398 0.4810 0.4092 0.5092 0.4700 0.4434 0.5087 0.5012 0.5178 0.4451 0.4844 0.4669 0.5073 0.1567 0.4826 0.3516 0.5306 CN

MR77 0.5358 0.4974 0.4879 0.5012 0.4016 0.3805 0.3538 0.5088 0.6036 0.5197 0.4281 0.3673 0.3385 0.3621 0.1126 0.4999 0.4863 0.5348 CN

MR149 0.2897 0.4256 0.4016 0.4596 0.4078 0.3795 0.3595 0.4271 0.4182 0.4126 0.4333 0.3582 0.2984 0.3184 0.0808 0.3981 0.2601 0.4306 MCI

MR150 0.2912 0.3234 0.4049 0.4397 0.3846 0.3320 0.2157 0.4364 0.4046 0.3805 0.4556 0.5041 0.1985 0.3619 0.0941 0.3287 0.3490 0.3135 MCI

MR151 0.3904 0.6184 0.4838 0.4348 0.3609 0.3279 0.3592 0.5221 0.7012 0.6146 0.5170 0.4805 0.3935 0.3767 0.1603 0.5817 0.4235 0.6626 MCI
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Table A2. ADNI-based ROI_AAL feature sample data for first three MRIs from each cohort, read as rAmygdala_L_f_img, r
meaning the region of Amygdala, _L indicating Left region, else R indicating Right region, img for image. Please refer [34]
for the coordinate location of each ROIs.

MR1 0.3063 0.3209 0.2122 0.1769 0.2674 0.3203 0.2141 0.2677 0.2654 0.2794 0.2672 0.2041 0.3475 0.3533 AD

MR2 0.4729 0.3926 0.3446 0.3796 0.3473 0.4205 0.4001 0.3818 0.3550 0.3068 0.3186 0.2946 0.3656 0.3195 AD

MR3 0.3469 0.3264 0.2977 0.2506 0.2616 0.3823 0.2678 0.3069 0.3429 0.3112 0.3060 0.2353 0.2274 0.2357 AD

MR75 0.5721 0.4882 0.3812 0.3908 0.4046 0.4206 0.4166 0.4157 0.3927 0.3580 0.3530 0.3380 0.4459 0.4360 CN

MR76 0.5252 0.4617 0.3808 0.3626 0.3669 0.3988 0.3864 0.3987 0.4061 0.3820 0.3699 0.3246 0.3908 0.3738 CN

MR77 0.5287 0.4413 0.3150 0.3775 0.3726 0.4020 0.4223 0.4084 0.2933 0.2943 0.2772 0.3368 0.3458 0.3355 CN

MR149 0.4055 0.3584 0.2730 0.3055 0.2877 0.3131 0.3126 0.3173 0.2794 0.2640 0.2800 0.2409 0.3247 0.3313 MCI

MR150 0.4358 0.3292 0.2948 0.2669 0.2827 0.3610 0.4250 0.4012 0.3014 0.2882 0.2119 0.4619 0.2773 0.2914 MCI

MR151 0.5278 0.5028 0.3238 0.4351 0.4315 0.4136 0.4195 0.4683 0.3103 0.3312 0.3073 0.2985 0.4123 0.4060 MCI
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Table A3. Results of validation and testing of performance on BR-NN trained on 70% ADNI extracted features. Validation
was performed in remaining 30% ADNI and tested in 100% GARD features. Iteration result is mentioned as [accuracy
sensitivity specificity] highest being [1 1 1] for ideal case.

Test
Con-

dition
Features

BR-NN
Hidden
Layer=17

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

AD
vs.
CN

ROI_CL

Validation
(ADNI
30%)

[0.97 1
0.95] [1 1 1] [1 1 1] [0.97 1

0.96] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [0.98 1
0.94]

[0.98 1
0.93]

Testing
(GARD
100%)

[0.80
0.61 1]

[ 0.82
0.64 1]

[0.77
0.54 1]

[0.83
0.66 1]

[0.78
0.57 1]

[0.91
0.83 1]

[0.91
0.83 1]

[0.78
0.57 1]

[0.83
0.66 1]

[0.80
0.61 1]

ROI_AAL

Validation
(ADNI
30%)

[1 1 1] [1 1 1] [1 1 1] [1 1 1] [0.97 1
0.95] [1 1 1] [1 1 1] [1 1 1] [0.95 1

0.90]
[0.97 1
0.95]

Testing
(GARD
100%)

[0.84
0.69 1]

[0.88
0.76 1]

[0.90
0.80 1]

[0.85
0.71 1]

[0.89
0.78 1]

[0.97
0.95 1]

[0.94
0.88 1]

[0.96
0.92]

[0.88
0.76 1]

[0.85
0.71 1]

CN
vs.

MCI

ROI_CL

Validation
(ADNI
30%)

[1 1 1] [0.97 1
0.91] [1 1 1] [1 1 1] [1 1 1] [0.91 1

0.84] [1 1 1] [1 1 1] [1 1 1] [0.94
0.91 1]

Testing
(GARD
100%)

[0.39
0.82 0]

[0.48 1
0]

[0.38
0.79 0]

[0.44
0.92 0]

[0.48 1
0]

[0.38
0.79 0]

[0.39
0.82 0]

[0.46
0.97 0]

[0.48 1
0]

[0.41
0.87 0]

ROI_AAL

Validation
(ADNI
30%)

[1 1 1] [0.94 1
0.875 [1 1 1] [1 1 1] [0.94 1

0.85] [1 1 1] [1 1 1] [1 1 1] [0.97 1
0.92]

[0.97 1
0.92]

Testing
(GARD
100%)

[0.43
0.89 0]

[0.44
0.92 0]

[0.43
0.89 0]

[0.41
0.87 0]

[0.48 1
0]

[0.40
0.84 0]

[0.40
0.84 0]

[0.46
0.97 0]

[0.35
0.74 0]

[0.29
0.61 0]
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